Lazy loaded image
读书笔记
2️⃣UML Chapter 2
Words 322Read Time 1 min
2025-3-2
2025-3-3
type
status
date
slug
summary
tags
category
icon
password
😀
本笔记是learning theory教材 ”Understanding Machine Learning: From Theory to Algorithms” 第二章的读书笔记

📝 The Statistical Learning Framework

  • Empirical Risk Minimization (ERM) learner
Formally, the learner should choose in advance (before seeing the data) a set of predictors. This set is called a hypothesis class and is denoted by H. Each h ∈ H is a function mapping from X to Y. For a given class H, and a training sample, S, the ERMH learner uses the ERM rule to choose a predictor h ∈ H, with the lowest possible error over S
Learner choose an from according to Learning rule (ERM) in the training set (sampled i.i.d. from distribution ).

🤗 Finite hypothesis class PAC learnability

  • Realizability assumption
证明思路:
💡
Goal: 找到一个足够大的m使得,在全域上的error L 小于 的同时,在训练集 S 上的 error 为0,发生这样的事件的概率小于
即要证明:
  • 设置L
    • realizability assumption
      • S 全部分类正确
      • union bound
      • 反代算出m的下界
      结论: 所有在有限假设空间中的算法模型,满足 S 的 size m大于一定的值,通过ERM学到的h是满足PAC条件的,也就是所有的有限假设空间都是PAC可学的(在本书中PAC learnable是默认满足realizability assumption的,否则就是agnostic PAC)

      📎 参考文章

      • 西瓜书 12.3.1
      上一篇
      Singular Values and SVD
      下一篇
      UML Chapter 5